GuilinDev

Java Steam Summary

19 May 2021

1. Java Stream 概述

Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Stream可以由数组或集合创建,对流的操作分为两种:

  • 中间操作,每次返回一个新的流,可以有多个。

  • 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。

另外,Stream有几个特性:

  • stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。

  • stream不会改变数据源,通常情况下会产生一个新的集合或一个值。

  • stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

2. Java Stream 创建

  1. 通过集合数组来创建
1
2
3
4
5
6
7
    List<String> list = Arrays.asList("a", "b", "c"); // 需要使用List Interface
        
    // 创建一个顺序流 Sequential Stream
    Stream<String> stream = list.stream();
    
    // 创建一个并行流 Parallel Stream
    Stream<String> parallelStream = list.parallelStream();
  1. 使用java.util.Arrays.stream(T[] array)方法用数组创建流
1
2
    int[] array={1,3,5,6,8};
    IntStream stream = Arrays.stream(array);
  1. 使用Stream的静态方法:of()、iterate()、generate()
1
2
3
4
5
6
7
    Stream<String> stream1 = Stream.of("a", "b", "c", "d", "e", "f");

    Stream<String> stream2 = Stream.iterate("zzz", (x) -> x + "OPQ").limit(4);
    stream2.forEach(System.out::println);

    Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
    stream3.forEach(System.out::println);

打印结果

1
2
3
4
5
6
7
zzz
zzzOPQ
zzzOPQOPQ
zzzOPQOPQOPQ
0.7334379516465784
0.8249986567254909
0.47393047848653147

stream和parallelStream的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。两者的处理不同之处:

如果流中的数据量足够大,并行流可以加快处理速度。

除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

1
Optional<Integer> findFirst = list.stream().parallel().filter(x-> x>6).findFirst();

3. Stream的使用

在使用stream之前,先理解一个概念:Optional 。

Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。详见:https://www.runoob.com/java/java8-optional-class.html

案例准备,创建一个Person类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Person {
    private String name;  // name
    private int salary; // salary
    private int age; // age
    private String sex; // gender
    private String area;  // location

    public Person(String name, int salary, int age,String sex,String area) {
        this.name = name;
        this.salary = salary;
        this.age = age;
        this.sex = sex;
        this.area = area;
    }
    // setter and getter
}

3.1 遍历/匹配(foreach/find/match)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional这个类型存在的。Stream的遍历、匹配非常简单。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
private void testIterateAndMatch() {
    List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

    // 遍历输出符合 >6 条件的元素
    list.stream().filter(x -> x > 6).forEach(System.out::println);
    // 匹配第一个
    Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
    // 匹配任意一个(适用于并行流)
    Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
    // 是否包含符合特定条件的元素
    boolean anyMatch = list.stream().anyMatch(x -> x < 6);
    System.out.println("匹配第一个值:" + findFirst.get());
    System.out.println("匹配任意一个值:" + findAny.get());
    System.out.println("是否存在大于6的值:" + anyMatch);
}

输出结果

1
2
3
4
5
6
7
9
8
匹配第一个值:7
匹配任意一个值:8
是否存在大于6的值:true

3.2 筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。

case1:筛选出Integer集合中大于7的元素,并打印出来

1
2
3
4
5
private void testFilter1() {
    List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
    Stream<Integer> stream = list.stream();
    stream.filter(x -> x > 7).forEach(System.out::println);
}

打印结果: 8 9

case2: 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
private void testFilter2() {
    List<Person> personList = new ArrayList<>();

    personList.add(new Person("Tom", 8900, 38, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 29,"female", "Washington"));
    personList.add(new Person("Anni", 8200, 41, "female", "New York"));
    personList.add(new Person("Owen", 9500, 45, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 33, "female", "New York"));

    // 新创建一个list来容纳filter后collect的集合
    List<String> filterList = personList.stream().filter(person -> person.getSalary() > 8000).map(Person::getName)
            .collect(Collectors.toList());

    System.out.println(filterList);
}

打印结果:

1
[Tom, Anni, Owen]

3.3 聚合(max/min/count)

max、min、count等等函数在mysql中常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。

case1: 获取String集合中最长的元素。

1
2
3
4
5
private void testAggregate1() {
    List<String> list = Arrays.asList("admn", "admin", "TEST123", "Hello", ""); //可为null
    Optional<String> maxLen = list.stream().max(Comparator.comparing(String::length));
    System.out.println("最长字符串: " + maxLen.get()); //get()获取当前对象
}

结果

1
最长字符串: TEST123

case2: 获取Integer集合中的最大值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
private void testAggregate2() {
    List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

    // 自然排序
    Optional<Integer> max = list.stream().max(Integer::compareTo);
    // 自定义排序,这里可以处理复杂的对象内根据特定的attributes排序的情况
    Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {
            return o1.compareTo(o2);
        }
    });

    System.out.println("自然排序的最大值:" + max.get());
    System.out.println("自定义排序的最大值:" + max2.get());
}

打印结果

1
2
自然排序的最大值:11
自定义排序的最大值:11

case3: 获取员工工资最高的人

1
2
3
4
5
6
7
8
9
10
11
12
13
private void testAggregate3() {
    List<Person> personList = new ArrayList<>();

    personList.add(new Person("Tom", 8900, 38, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 29,"female", "Washington"));
    personList.add(new Person("Anni", 8200, 41, "female", "New York"));
    personList.add(new Person("Owen", 9500, 45, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 33, "female", "New York"));

    Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary)); //根据工资对所有员工取最大值
    System.out.println(max.orElse(new Person("TestPerson", 0, 0, "", "")).getSalary());
}

打印结果:

1
9500

case4: 找出所有员工中工资大于8000的数量

1
2
3
4
5
6
7
8
9
10
11
12
13
private void testAggregate4() {
    List<Person> personList = new ArrayList<>();

    personList.add(new Person("Tom", 8900, 38, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 29,"female", "Washington"));
    personList.add(new Person("Anni", 8200, 41, "female", "New York"));
    personList.add(new Person("Owen", 9500, 45, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 33, "female", "New York"));

    long count = personList.stream().filter(person -> person.getSalary() > 8000).count();
    System.out.println("工资大于8000的员工数量: " + count);
}

打印结果

1
工资大于8000的员工数量: 3

3.4 映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:

1
2
3
* map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。

* flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

case1: 英文字符串数组的元素全部改为大写。整数数组每个元素 +3

1
2
3
4
5
6
7
8
9
10
private void testMap1() {
    String[] strArr = {"abcd", "bcdd", "defde", "fTr" };
    List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

    List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
    List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

    System.out.println("每个元素大写:" + strList);
    System.out.println("每个元素+3:" + intListNew);
}

打印结果

1
2
每个元素大写:[ABCD, BCDD, DEFDE, FTR]
每个元素+3:[4, 6, 8, 10, 12, 14]

case2: 将员工的薪资全部增加1000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
private void testMap2() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    // 不改变原来员工集合
    List<Person> personListNew = personList.stream().map(person -> {
        Person personNew = new Person(person.getName(), 0, 0, null, null);
        personNew.setSalary(person.getSalary() + 1000);
        return personNew;
    }).collect(Collectors.toList());

    System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
    System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

    // 改变原来员工集合
    List<Person> personListNew2 = personList.stream().peek(person -> // 这里peek可以代替,并且不用return
            person.setSalary(person.getSalary() + 1000)
    ).collect(Collectors.toList());

    System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
}

打印结果

1
2
3
4
一次改动前:Tom-->8900
一次改动后:Tom-->9900
二次改动前:Tom-->9900
二次改动后:Tom-->9900

case3: 将两个字符数组合并成一个新的字符数组

1
2
3
4
5
6
7
8
9
10
11
12
13
private void testFlatmap() {
    List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");

    List<String> listNew = list.stream().flatMap(s -> {
        // 将原先列表中的每个元素都转换成一个stream
        String[] split = s.split(",");
        Stream<String> s2 = Arrays.stream(split);
        return s2;
    }).collect(Collectors.toList());

    System.out.println("处理前的集合:" + list);
    System.out.println("处理后的集合:" + listNew);
}

打印结果

1
2
处理前的集合:[m,k,l,a, 1,3,5,7]
处理后的集合:[m, k, l, a, 1, 3, 5, 7]

3.5 归约(reduce)

归约,也称缩减,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

case1: 求Integer集合的元素之和、乘积和最大值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
private void testReduce1() {
    List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);

    // 求和方式1
    Optional<Integer> sum1 = list.stream().reduce((x, y) -> x + y);
    // 求和方式2
    Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
    // 求和方式3
    Integer sum3 = list.stream().reduce(0, Integer::sum);

    // 求乘积
    Optional<Integer> product = list.stream().reduce((x, y) -> x * y);

    // 求最大值方式1
    Optional<Integer> max1 = list.stream().reduce((x, y) -> x > y ? x : y); //类似选择排序
    // 求最大值写法2
    Integer max2 = list.stream().reduce(1, Integer::max);

    System.out.println("list求和:" + sum1.get() + "," + sum2.get() + "," + sum3);
    System.out.println("list求积:" + product.get());
    System.out.println("list求和:" + max1.get() + "," + max2);
}

打印结果

1
2
3
list求和:29,29,29
list求积:2112
list求和:11,11

case1: 求所有员工的工资之和以及最高工资

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
private void testReduce2() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    // 求工资之和方式1:
    Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    // 求工资之和方式2:
    Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
            (sum1, sum2) -> sum1 + sum2);
    // 求工资之和方式3:
    Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);

    // 求最高工资方式1:
    Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
            Integer::max);
    // 求最高工资方式2:
    Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
            (max1, max2) -> max1 > max2 ? max1 : max2);

    System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
    System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
}

打印结果

1
2
工资之和:49300,49300,49300
最高工资:9500,9500

3.6 收集(collect)

collect,是内容最繁多、功能最丰富的部分。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也,可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

3.6.1 归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
private void testCollect() {
    List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
    List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
    Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));

    Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
            .collect(Collectors.toMap(Person::getName, p -> p));
    System.out.println("toList:" + listNew);
    System.out.println("toSet:" + set);
    System.out.println("toMap:" + map);
}

打印结果

1
2
3
toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=streamTest.Person@17f6480, Anni=streamTest.Person@2d6e8792}
3.6.2 统计(count/averaging)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。

Collectors提供了一系列用于数据统计的静态方法:

1
2
3
4
5
6
7
8
9
* 计数:count

* 平均值:averagingInt、averagingLong、averagingDouble

* 最值:maxBy、minBy

* 求和:summingInt、summingLong、summingDouble

* 统计以上所有:summarizingInt、summarizingLong、summarizingDouble

Case: 统计员工人数、平均工资、工资总额、最高工资

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
private void testCountAvgMinMax() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    // 求总数
    Long count = personList.stream().collect(Collectors.counting());
    // 求平均工资
    Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
    // 求最高工资
    Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
    // 求工资之和
    Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
    // 一次性统计所有信息
    DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

    System.out.println("员工总数:" + count);
    System.out.println("员工平均工资:" + average);
    System.out.println("员工工资总和:" + sum);
    System.out.println("员工工资所有统计:" + collect);
}

打印结果

1
2
3
4
员工总数:3
员工平均工资:7900.0
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000, min=7000.000000, average=7900.000000, max=8900.000000}
3.6.3 分组(partitioningBy/groupingBy)
1
2
3
* 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。

* 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

Case: 将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
private void testPartitionGrouping() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 20,"male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 30, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 38, "female", "New York"));
    personList.add(new Person("Owen", 9500, 30, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 40,"female", "New York"));

    // 将员工按薪资是否高于8000分组
    Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
    // 将员工按性别分组
    Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
    // 将员工先按性别分组,再按地区分组
    Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
    System.out.println("员工按薪资是否大于8000分组情况:" + part);
    System.out.println("员工按性别分组情况:" + group);
    System.out.println("员工按性别、地区:" + group2);
}

打印结果

1
2
3
4
员工按薪资是否大于8000分组情况:{false=[streamTest.Person@3796751b, streamTest.Person@67b64c45, streamTest.Person@4411d970], true=[streamTest.Person@6442b0a6, streamTest.Person@60f82f98, streamTest.Person@35f983a6]}
员工按性别分组情况:{female=[streamTest.Person@67b64c45, streamTest.Person@60f82f98, streamTest.Person@4411d970], male=[streamTest.Person@6442b0a6, streamTest.Person@3796751b, streamTest.Person@35f983a6]}
员工按性别、地区:{female={New York=[streamTest.Person@60f82f98, streamTest.Person@4411d970], Washington=[streamTest.Person@67b64c45]}, male={New York=[streamTest.Person@6442b0a6, streamTest.Person@35f983a6], Washington=[streamTest.Person@3796751b]}}

3.6.4 接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

1
2
3
4
5
6
7
8
9
10
11
12
private void testJoining() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
    System.out.println("所有员工的姓名:" + names);
    List<String> list = Arrays.asList("A", "B", "C");
    String string = list.stream().collect(Collectors.joining("-"));
    System.out.println("拼接后的字符串:" + string);
}

打印结果

1
2
所有员工的姓名:Tom,Jack,Lily
拼接后的字符串:A-B-C
3.6.5 归约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
private void testReducing() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    // 每个员工减去起征点后的薪资之和(这个例子并不严谨)
    Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
    System.out.println("员工扣税薪资总和:" + sum);

    // stream的reduce
    Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    System.out.println("员工薪资总和:" + sum2.get());
}

打印结果

1
2
员工扣税薪资总和:8700
员工薪资总和:23700

3.7 排序(sorted)

sorted,中间操作。有两种排序:

1
2
3
* sorted():自然排序,流中元素需实现Comparable接口

* sorted(Comparator com):Comparator排序器自定义排序

Case: 将员工按工资由高到低(工资一样则按年龄由大到小)排序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
private void testSort() {
    List<Person> personList = new ArrayList<Person>();

    personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
    personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
    personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 8800, 26, "male", "New York"));
    personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

    // 按工资增序排序
    List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
            .collect(Collectors.toList());
    // 按工资倒序排序
    List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
            .map(Person::getName).collect(Collectors.toList());
    // 先按工资再按年龄自然排序(从小到大)
    List<String> newList3 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
            .map(Person::getName).collect(Collectors.toList());
    // 先按工资再按年龄自定义排序(从大到小)
    List<String> newList4 = personList.stream().sorted((p1, p2) -> {
        if (p1.getSalary() == p2.getSalary()) {
            return p2.getAge() - p1.getAge();
        } else {
            return p2.getSalary() - p1.getSalary();
        }
    }).map(Person::getName).collect(Collectors.toList());

    System.out.println("按工资自然排序:" + newList);
    System.out.println("按工资降序排序:" + newList2);
    System.out.println("先按工资再按年龄自然排序:" + newList3);
    System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}

打印结果

1
2
3
4
按工资自然排序:[Lily, Tom, Sherry, Jack, Alisa]
按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄自然排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]

3.8 提取/组合

流也可以进行合并、去重、限制、跳过等操作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
private void testOthers0() {
    String[] arr1 = { "a", "b", "c", "d" };
    String[] arr2 = { "d", "e", "f", "g" };

    Stream<String> stream1 = Stream.of(arr1);
    Stream<String> stream2 = Stream.of(arr2);
    // concat:合并两个流 distinct:去重
    List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
    // limit:限制从流中获得前n个数据
    List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
    // skip:跳过前n个数据
    List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

    System.out.println("流合并:" + newList);
    System.out.println("limit:" + collect);
    System.out.println("skip:" + collect2);
}

打印结果

1
2
3
流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]