05 August 2008
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as
and 1
1
respectively in the grid.1
0
Note: m and n will be at most 100.
Example 1:
1
2
3
4
5
6
7
8
9
10
11
12
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
这道题是给定的二维数组里面可能会有障碍物,用1表示,依然是62题DP的做法和考虑状态压缩,只是在dp过程或者滚动数组过程中,需要检查一下当前路径是否有障碍物,如果有,将当前状态(格子)设为0,表示当前状态格子对右边和下边的格子不做贡献。
正常DP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0) {
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
// 初始化
for (int k = 0; k < m; k++) {
// 当前格子为障碍物,或者上边的状态为0,堵路了,当前状态为0
if (obstacleGrid[k][0] == 1 || (k > 0 && dp[k - 1][0] == 0)) {
dp[k][0] = 0;
} else {
dp[k][0] = 1;
}
}
for (int k = 0; k < n; k++) {
// 当前格子为障碍物,或者左边的状态为0,堵路了,当前状态为0
if (obstacleGrid[0][k] == 1 || (k > 0 && dp[0][k - 1] == 0)) {
dp[0][k] = 0;
} else {
dp[0][k] = 1;
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) { // 障碍物
dp[i][j] = 0; //当前状态贡献为0
} else { // 正常找路
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
}
把初始化写到一个循环里面,上面分开写比较好懂
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0) {
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
// 这里如果先分开对第一行和第一列进行初始化不太好写,因为有可能存在某一行/列全是障碍的情况,
// 这时候应该一条路都没有,如果先初始化第一行或第一列,需要检查所在行或列是否都为障碍
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 1) { // 障碍物
dp[i][j] = 0; //当前状态贡献为0
} else { // 正常找路
if (i == 0 && j == 0) { //第一个格子进行初始化
dp[i][j] = 1;
} else if (i == 0) { // 第一行
if (dp[i][j - 1] == 0) { // 上一个是障碍
dp[i][j] = 0;
} else {
dp[i][j] = 1;
}
} else if (j == 0) { // 第一列
if (dp[i - 1][j] == 0) {
dp[i][j] = 0;
} else {
dp[i][j] = 1;
}
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
}
return dp[m - 1][n - 1];
}
}
DP,反过来从右下到左上写也是一样,锻炼下逆向思维
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0) {
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
// 这里如果先对第一行和第一列进行初始化不太好写,因为有可能存在某一行/列全是障碍的情况,
// 这时候应该一条路都没有,如果先初始化第一行或第一列,需要检查所在行或列是否都为障碍
for (int i = m - 1; i >= 0; i--) {
for (int j = n - 1; j >= 0; j--) {
if (obstacleGrid[i][j] == 1) {//有障碍物,注意这个条件要先检查
dp[i][j] = 0;
} else {
if (i == m - 1 && j == n - 1) {//在右下角的终点处,初始化为一条路
dp[i][j] = 1;
} else if (i == m - 1) {//初始化一列
if (dp[i][j + 1] == 0) {//最后一列如果下面的路被堵住了,上面的格子均为0条路径
dp[i][j] = 0;
} else {
dp[i][j] = 1;
}
} else if(j == n - 1) {//初始化一行
if (dp[i + 1][j] == 0) {//最后一行如果右面的路被堵住了,左面的格子均为0条路径
dp[i][j] = 0;
} else {
dp[i][j] = 1;
}
} else{
dp[i][j] = dp[i + 1][j] + dp[i][j + 1];
}
}
}
}
return dp[0][0];
}
}
DP + 状态压缩,滚动行比滚动列较好维护一些
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0) {
return 0;
}
int cols = obstacleGrid[0].length; //计算一行中的列数
int[] dp = new int[cols]; // hold一行的数组,该一维数组每次向下滚动一行
dp[0] = 1; // 初始化第一行为1,下面的检查中可能会改变为0
for (int[] oneRow : obstacleGrid) {
for (int j = 0; j < cols; j++) { // 这里从j=0第一列开始检查
if (oneRow[j] == 1) {//当前行的障碍物
dp[j] = 0;
} else if (j > 0) {//这里第一行已经初始化,不要再检查
dp[j] += dp[j - 1]; //状态压缩前上面的值已经滚动到当前行,这时候只需加上左边值即可
}
}
}
return dp[cols - 1]; //最后一行的最后一个元素
}
}