05 August 2008
Given a binary tree, return the zigzag level order traversal of its nodes’ values. (ie, from left to right, then right to left for the next level and alternate between).
For example:
Given binary tree
,1
[3,9,20,null,null,15,7]
1
2
3
4
5
3
/ \
9 20
/ \
15 7
return its zigzag level order traversal as:
1
2
3
4
5
[
[3],
[20,9],
[15,7]
]
1) BFS,可以用102普通层序遍历的办法,做个标记flag,第一层从左到右向遍历,第二层从右到左遍历,第三层从左到右遍历,so on and so forth,不过普通层序遍历是用一个queue来实现,这里可以用两个queue或者两个stack实现方向的转换,Java的API则直接使用一个双端队列。
实现 BFS 的两个方法:
在其中第二种方法的基础上,可以借助双端队列实现锯齿形顺序。在每一层,使用一个空的双端队列保存该层所有的节点。根据每一层的访问顺序,即从左到右或从右到左,决定从双端队列的哪一端插入节点。
时间和空间复杂度均为O(n),n为节点个数。
2) DFS,利用递归栈保存层数的信息,时间复杂度为O(n),空间O(H),n为节点个数,H为二叉树的高度。
BFS
标准BFS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
Deque<TreeNode> queue = new LinkedList<>();
queue.offer(root);
boolean odd = true; // 用来标记flag,以此决定从哪个方向遍历该层,或者用个int整数判断奇偶也行
while (!queue.isEmpty()) {
List<Integer> oneLevel = new LinkedList<>();
int count = queue.size();
for (int i = 0; i < count; i++) {
TreeNode node = queue.poll();
if (odd) {// 判断奇偶数的行
oneLevel.add(node.val);
} else {
oneLevel.add(0, node.val); // 偶数行插入到头部
}
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
result.add(oneLevel);
odd = !odd;
}
return result;
}
}
一层循环的BFS,并且用linkedlist来实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
// add the root element with a delimiter to kick off the BFS loop
LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
queue.addLast(root);
queue.addLast(null); // 每个节点末尾加一个分隔符
LinkedList<Integer> oneLevel = new LinkedList<Integer>();
boolean odd = true;
while (queue.size() > 0) {
TreeNode node = queue.pollFirst();
if (node != null) { // 节点后面跟的分隔符就是null
if (odd) {
oneLevel.addLast(node.val);
} else {
oneLevel.addFirst(node.val);
}
if (node.left != null) {
queue.addLast(node.left);
}
if (node.right != null) {
queue.addLast(node.right);
}
} else {
// we finish the scan of one level
result.add(oneLevel);
oneLevel = new LinkedList<Integer>();
// prepare for the next level
if (queue.size() > 0)
queue.addLast(null);
odd = !odd;
}
}
return result;
}
}
DFS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
dfs(result, root, 0);
return result;
}
private void dfs(List<List<Integer>> result, TreeNode root, int depth) {
if (root == null) { // corner case
return;
}
if (result.size() == depth) { // 该层已经遍历完,从0开始
result.add(new LinkedList<>());
}
if (depth % 2 == 0) { // 奇数层加到尾部
result.get(depth).add(root.val);
} else { // 偶数层加到头部
result.get(depth).add(0, root.val);
}
dfs(result, root.left, depth + 1);
dfs(result, root.right, depth + 1);
}
}