05 August 2008
Say you have an array for which the i_th element is the price of a given stock on day _i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
1
2
3
4
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
1
2
3
4
5
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
1
2
3
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
跟前面两道题相比,这道题是要求只交易两次,找到最大利润。
这个解法很清晰明确,这里就不造轮子了,https://blog.csdn.net/linhuanmars/article/details/23236995
这里我们先解释最多可以进行k次交易的算法,然后最多进行两次我们只需要把k取成2即可。我们还是使用“局部最优和全局最优解法”。我们维护两种量,一个是当前到达第i天,最多进行j次交易的情况下,最好的利润是多少(global[i][j]);另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的的情况下,最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,
global[i][j]=max(local[i][j],global[i-1][j]),
也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。对于局部变量的维护,递推式是
local[i][j]=max(global[i-1][j-1]+max(diff,0), local[i-1][j]+diff),
也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天);第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。
上面的算法中对于天数需要一次扫描,而每次要对交易次数进行递推式求解,所以时间复杂度是O(n*k),如果是最多进行两次交易,那么复杂度还是O(n)。空间上只需要维护当天数据皆可以,所以是O(k),当k=2,则是O(1)。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length == 0) {
return 0;
}
int[] local = new int[3];
int[] global = new int[3];
for (int i = 0; i < prices.length - 1; i++) {
int diff = prices[i+1] - prices[i];
for (int j = 2; j >=1; j--) {
local[j] = Math.max(global[j-1] + (diff > 0 ? diff : 0), local[j] + diff);
global[j] = Math.max(local[j], global[j]);
}
}
return global[2];
}
}
确定状态机的办法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public int maxProfit(int[] prices) {
if (prices.length == 0) {
return 0;
}
long[][][] dp = new long[prices.length][3][2];
dp[0][1][0] = Integer.MIN_VALUE;
dp[0][1][1] = -prices[0];
dp[0][2][0] = Integer.MIN_VALUE;
dp[0][2][1] = Integer.MIN_VALUE;
for (int i = 1; i < prices.length; i++) {
dp[i][1][0] =
Math.max(dp[i - 1][1][0], dp[i - 1][1][1] + prices[i]);
dp[i][1][1] =
Math.max(dp[i-1][1][1], -prices[i]);
dp[i][2][0] =
Math.max(dp[i-1][2][0], dp[i-1][2][1] + prices[i]);
dp[i][2][1] =
Math.max(dp[i-1][2][1], dp[i-1][1][0] - prices[i]);
}
int res = (int) Math.max(dp[prices.length - 1][2][0], dp[prices.length - 1][1][0]);
return res < 0 ? 0 : res;
}
}