05 August 2008
Reverse bits of a given 32 bits unsigned integer.
Note:
1
-3
and the output represents the signed integer 1
-1073741825
.Example 1:
1
2
3
Input: n = 00000010100101000001111010011100
Output: 964176192 (00111001011110000010100101000000)
Explanation: The input binary string 00000010100101000001111010011100 represents the unsigned integer 43261596, so return 964176192 which its binary representation is 00111001011110000010100101000000.
Example 2:
1
2
3
Input: n = 11111111111111111111111111111101
Output: 3221225471 (10111111111111111111111111111111)
Explanation: The input binary string 11111111111111111111111111111101 represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is 10111111111111111111111111111111.
Constraints:
1
32
Follow up: If this function is called many times, how would you optimize it?
方法1,逐位颠倒,写个循环,循环32次每次右移取出一位。
方法2:分治,若要翻转一个二进制串,可以将其均分成左右两部分,对每部分递归执行翻转操作,然后将左半部分拼在右半部分的后面,即完成了翻转。由于左右两部分的计算方式是相似的,利用位掩码和位移运算,自底向上地完成这一分治流程。
对于递归的最底层,需要交换所有奇偶位:
取出所有奇数位和偶数位; 将奇数位移到偶数位上,偶数位移到奇数位上。 类似地,对于倒数第二层,每两位分一组,按组号取出所有奇数组和偶数组,然后将奇数组移到偶数组上,偶数组移到奇数组上。以此类推。
需要注意的是,在某些语言(如 Java)中,没有无符号整数类型,因此对 n 的右移操作应使用逻辑右移。
逐个颠倒
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class Solution {
public int reverseBits(int n) {
//定义返回结果
int res = 0;
for(int i = 0; i <= 31; i++){
//1 & (n >> i表示n右移i位,并取出其最后一位
//将取出的最后一位左移31-i位,存入返回结果中
res += ((1 & (n >> i)) << (31 - i));
}
return res;
}
}
// ===========================================================
// 时间复杂度:O(logn)。空间复杂度:O(1)。
public class Solution {
public int reverseBits(int n) {
int rev = 0;
for (int i = 0; i < 32 && n != 0; ++i) {
rev |= (n & 1) << (31 - i);
n >>>= 1;
}
return rev;
}
}
分治
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 时间复杂度:O(1)。空间复杂度:O(1)。
public class Solution {
private static final int M1 = 0x55555555; // 01010101010101010101010101010101
private static final int M2 = 0x33333333; // 00110011001100110011001100110011
private static final int M4 = 0x0f0f0f0f; // 00001111000011110000111100001111
private static final int M8 = 0x00ff00ff; // 00000000111111110000000011111111
public int reverseBits(int n) {
n = n >>> 1 & M1 | (n & M1) << 1;
n = n >>> 2 & M2 | (n & M2) << 2;
n = n >>> 4 & M4 | (n & M4) << 4;
n = n >>> 8 & M8 | (n & M8) << 8;
return n >>> 16 | n << 16;
}
}