05 August 2008
You are given an array of
, where 1
intervals
and each 1
intervals[i] = [starti, endi]
is unique.1
starti
The right interval for an interval
is an interval 1
i
such that 1
j
and 1
startj >= endi
is minimized.1
startj
Return an array of right interval indices for each interval
. If no right interval exists for interval 1
i
, then put 1
i
at index 1
-1
.1
i
Example 1:
1
2
3
Input: intervals = [[1,2]]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
1
2
3
4
5
Input: intervals = [[3,4],[2,3],[1,2]]
Output: [-1,0,1]
Explanation: There is no right interval for [3,4].
The right interval for [2,3] is [3,4] since start0 = 3 is the smallest start that is >= end1 = 3.
The right interval for [1,2] is [2,3] since start1 = 2 is the smallest start that is >= end2 = 2.
Example 3:
1
2
3
4
Input: intervals = [[1,4],[2,3],[3,4]]
Output: [-1,2,-1]
Explanation: There is no right interval for [1,4] and [3,4].
The right interval for [2,3] is [3,4] since start2 = 3 is the smallest start that is >= end1 = 3.
Constraints:
1
1 <= intervals.length <= 2 * 104
1
intervals[i].length == 2
1
-106 <= starti <= endi <= 106
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Solution {
public int[] findRightInterval(Interval[] intervals) {
int[] result = new int[intervals.length];
java.util.NavigableMap<Integer, Integer> intervalMap = new TreeMap<>();
for (int i = 0; i < intervals.length; ++i) {
intervalMap.put(intervals[i].start, i);
}
for (int i = 0; i < intervals.length; ++i) {
Map.Entry<Integer, Integer> entry = intervalMap.ceilingEntry(intervals[i].end);
result[i] = (entry != null) ? entry.getValue() : -1;
}
return result;
}
}