05 August 2008
Design and implement a data structure for Least Frequently Used (LFU) cache.
Implement the ‘LFUCache’ class:
Notice that the number of times an item is used is the number of calls to the ‘get’ and ‘put’ functions for that item since it was inserted. This number is set to zero when the item is removed.
Follow up:
Could you do both operations in O(1) time complexity?
Example 1:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
Explanation
LFUCache lFUCache = new LFUCache(2);
lFUCache.put(1, 1);
lFUCache.put(2, 2);
lFUCache.get(1); // return 1
lFUCache.put(3, 3); // evicts key 2
lFUCache.get(2); // return -1 (not found)
lFUCache.get(3); // return 3
lFUCache.put(4, 4); // evicts key 1.
lFUCache.get(1); // return -1 (not found)
lFUCache.get(3); // return 3
lFUCache.get(4); // return 4
Constraints:
https://cloud.tencent.com/developer/article/1645636
三个HashMaps + LinkedHashSet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class LFUCache {
private int min;
private final int capacity;
private final HashMap<Integer, Integer> keyToVal;
private final HashMap<Integer, Integer> keyToCount;
private final HashMap<Integer, LinkedHashSet<Integer>> countToLRUKeys;
public LFUCache(int capacity) {
this.min = -1;
this.capacity = capacity;
this.keyToVal = new HashMap<>();
this.keyToCount = new HashMap<>();
this.countToLRUKeys = new HashMap<>();
}
public int get(int key) {
if (!keyToVal.containsKey(key)) return -1;
int count = keyToCount.get(key);
countToLRUKeys.get(count).remove(key); // remove key from current count (since we will inc count)
if (count == min && countToLRUKeys.get(count).size() == 0) min++; // nothing in the current min bucket
putCount(key, count + 1);
return keyToVal.get(key);
}
public void put(int key, int value) {
if (capacity <= 0) return;
if (keyToVal.containsKey(key)) {
keyToVal.put(key, value); // update key's value
get(key); // update key's count
return;
}
if (keyToVal.size() >= capacity)
evict(countToLRUKeys.get(min).iterator().next()); // evict LRU from this min count bucket
min = 1;
putCount(key, min); // adding new key and count
keyToVal.put(key, value); // adding new key and value
}
private void evict(int key) {
countToLRUKeys.get(min).remove(key);
keyToVal.remove(key);
}
private void putCount(int key, int count) {
keyToCount.put(key, count);
countToLRUKeys.computeIfAbsent(count, ignore -> new LinkedHashSet<>());
countToLRUKeys.get(count).add(key);
}
}
使用LinkedHashSet作为双向链表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class LFUCache {
Map<Integer, Node> cache; // 存储缓存的内容
Map<Integer, LinkedHashSet<Node>> freqMap; // 存储每个频次对应的双向链表
int size;
int capacity;
int min; // 存储当前最小频次
public LFUCache(int capacity) {
cache = new HashMap<> (capacity);
freqMap = new HashMap<>();
this.capacity = capacity;
}
public int get(int key) {
Node node = cache.get(key);
if (node == null) {
return -1;
}
freqInc(node);
return node.value;
}
public void put(int key, int value) {
if (capacity == 0) {
return;
}
Node node = cache.get(key);
if (node != null) {
node.value = value;
freqInc(node);
} else {
if (size == capacity) {
Node deadNode = removeNode();
cache.remove(deadNode.key);
size--;
}
Node newNode = new Node(key, value);
cache.put(key, newNode);
addNode(newNode);
size++;
}
}
void freqInc(Node node) {
// 从原freq对应的链表里移除, 并更新min
int freq = node.freq;
LinkedHashSet<Node> set = freqMap.get(freq);
set.remove(node);
if (freq == min && set.size() == 0) {
min = freq + 1;
}
// 加入新freq对应的链表
node.freq++;
LinkedHashSet<Node> newSet = freqMap.get(freq + 1);
if (newSet == null) {
newSet = new LinkedHashSet<>();
freqMap.put(freq + 1, newSet);
}
newSet.add(node);
}
void addNode(Node node) {
LinkedHashSet<Node> set = freqMap.get(1);
if (set == null) {
set = new LinkedHashSet<>();
freqMap.put(1, set);
}
set.add(node);
min = 1;
}
Node removeNode() {
LinkedHashSet<Node> set = freqMap.get(min);
Node deadNode = set.iterator().next();
set.remove(deadNode);
return deadNode;
}
}
class Node {
int key;
int value;
int freq = 1;
public Node() {}
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}
自定义双向链表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
class LFUCache {
Map<Integer, Node> cache; // 存储缓存的内容
Map<Integer, DoublyLinkedList> freqMap; // 存储每个频次对应的双向链表
int size;
int capacity;
int min; // 存储当前最小频次
public LFUCache(int capacity) {
cache = new HashMap<> (capacity);
freqMap = new HashMap<>();
this.capacity = capacity;
}
public int get(int key) {
Node node = cache.get(key);
if (node == null) {
return -1;
}
freqInc(node);
return node.value;
}
public void put(int key, int value) {
if (capacity == 0) {
return;
}
Node node = cache.get(key);
if (node != null) {
node.value = value;
freqInc(node);
} else {
if (size == capacity) {
DoublyLinkedList minFreqLinkedList = freqMap.get(min);
cache.remove(minFreqLinkedList.tail.pre.key);
minFreqLinkedList.removeNode(minFreqLinkedList.tail.pre); // 这里不需要维护min, 因为下面add了newNode后min肯定是1.
size--;
}
Node newNode = new Node(key, value);
cache.put(key, newNode);
DoublyLinkedList linkedList = freqMap.get(1);
if (linkedList == null) {
linkedList = new DoublyLinkedList();
freqMap.put(1, linkedList);
}
linkedList.addNode(newNode);
size++;
min = 1;
}
}
void freqInc(Node node) {
// 从原freq对应的链表里移除, 并更新min
int freq = node.freq;
DoublyLinkedList linkedList = freqMap.get(freq);
linkedList.removeNode(node);
if (freq == min && linkedList.head.post == linkedList.tail) {
min = freq + 1;
}
// 加入新freq对应的链表
node.freq++;
linkedList = freqMap.get(freq + 1);
if (linkedList == null) {
linkedList = new DoublyLinkedList();
freqMap.put(freq + 1, linkedList);
}
linkedList.addNode(node);
}
}
class Node {
int key;
int value;
int freq = 1;
Node pre;
Node post;
public Node() {}
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}
class DoublyLinkedList {
Node head;
Node tail;
public DoublyLinkedList() {
head = new Node();
tail = new Node();
head.post = tail;
tail.pre = head;
}
void removeNode(Node node) {
node.pre.post = node.post;
node.post.pre = node.pre;
}
void addNode(Node node) {
node.post = head.post;
head.post.pre = node;
head.post = node;
node.pre = head;
}
}
用HashMap存储频次的最优解
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
class LFUCache {
Map<Integer, Node> cache; // 存储缓存的内容,Node中除了value值外,还有key、freq、所在doublyLinkedList、所在doublyLinkedList中的postNode、所在doublyLinkedList中的preNode,具体定义在下方。
DoublyLinkedList firstLinkedList; // firstLinkedList.post 是频次最大的双向链表
DoublyLinkedList lastLinkedList; // lastLinkedList.pre 是频次最小的双向链表,满了之后删除 lastLinkedList.pre.tail.pre 这个Node即为频次最小且访问最早的Node
int size;
int capacity;
public LFUCache(int capacity) {
cache = new HashMap<> (capacity);
firstLinkedList = new DoublyLinkedList();
lastLinkedList = new DoublyLinkedList();
firstLinkedList.post = lastLinkedList;
lastLinkedList.pre = firstLinkedList;
this.capacity = capacity;
}
public int get(int key) {
Node node = cache.get(key);
if (node == null) {
return -1;
}
// 该key访问频次+1
freqInc(node);
return node.value;
}
public void put(int key, int value) {
if (capacity == 0) {
return;
}
Node node = cache.get(key);
// 若key存在,则更新value,访问频次+1
if (node != null) {
node.value = value;
freqInc(node);
} else {
// 若key不存在
if (size == capacity) {
// 如果缓存满了,删除lastLinkedList.pre这个链表(即表示最小频次的链表)中的tail.pre这个Node(即最小频次链表中最先访问的Node),如果该链表中的元素删空了,则删掉该链表。
cache.remove(lastLinkedList.pre.tail.pre.key);
lastLinkedList.removeNode(lastLinkedList.pre.tail.pre);
size--;
if (lastLinkedList.pre.head.post == lastLinkedList.pre.tail) {
removeDoublyLinkedList(lastLinkedList.pre);
}
}
// cache中put新Key-Node对儿,并将新node加入表示freq为1的DoublyLinkedList中,若不存在freq为1的DoublyLinkedList则新建。
Node newNode = new Node(key, value);
cache.put(key, newNode);
if (lastLinkedList.pre.freq != 1) {
DoublyLinkedList newDoublyLinedList = new DoublyLinkedList(1);
addDoublyLinkedList(newDoublyLinedList, lastLinkedList.pre);
newDoublyLinedList.addNode(newNode);
} else {
lastLinkedList.pre.addNode(newNode);
}
size++;
}
}
/**
* node的访问频次 + 1
*/
void freqInc(Node node) {
// 将node从原freq对应的双向链表里移除, 如果链表空了则删除链表。
DoublyLinkedList linkedList = node.doublyLinkedList;
DoublyLinkedList preLinkedList = linkedList.pre;
linkedList.removeNode(node);
if (linkedList.head.post == linkedList.tail) {
removeDoublyLinkedList(linkedList);
}
// 将node加入新freq对应的双向链表,若该链表不存在,则先创建该链表。
node.freq++;
if (preLinkedList.freq != node.freq) {
DoublyLinkedList newDoublyLinedList = new DoublyLinkedList(node.freq);
addDoublyLinkedList(newDoublyLinedList, preLinkedList);
newDoublyLinedList.addNode(node);
} else {
preLinkedList.addNode(node);
}
}
/**
* 增加代表某1频次的双向链表
*/
void addDoublyLinkedList(DoublyLinkedList newDoublyLinedList, DoublyLinkedList preLinkedList) {
newDoublyLinedList.post = preLinkedList.post;
newDoublyLinedList.post.pre = newDoublyLinedList;
newDoublyLinedList.pre = preLinkedList;
preLinkedList.post = newDoublyLinedList;
}
/**
* 删除代表某1频次的双向链表
*/
void removeDoublyLinkedList(DoublyLinkedList doublyLinkedList) {
doublyLinkedList.pre.post = doublyLinkedList.post;
doublyLinkedList.post.pre = doublyLinkedList.pre;
}
}
class Node {
int key;
int value;
int freq = 1;
Node pre; // Node所在频次的双向链表的前继Node
Node post; // Node所在频次的双向链表的后继Node
DoublyLinkedList doublyLinkedList; // Node所在频次的双向链表
public Node() {}
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}
class DoublyLinkedList {
int freq; // 该双向链表表示的频次
DoublyLinkedList pre; // 该双向链表的前继链表(pre.freq < this.freq)
DoublyLinkedList post; // 该双向链表的后继链表 (post.freq > this.freq)
Node head; // 该双向链表的头节点,新节点从头部加入,表示最近访问
Node tail; // 该双向链表的尾节点,删除节点从尾部删除,表示最久访问
public DoublyLinkedList() {
head = new Node();
tail = new Node();
head.post = tail;
tail.pre = head;
}
public DoublyLinkedList(int freq) {
head = new Node();
tail = new Node();
head.post = tail;
tail.pre = head;
this.freq = freq;
}
void removeNode(Node node) {
node.pre.post = node.post;
node.post.pre = node.pre;
}
void addNode(Node node) {
node.post = head.post;
head.post.pre = node;
head.post = node;
node.pre = head;
node.doublyLinkedList = this;
}
}