GuilinDev

Lc0516

05 August 2008

Longest Palindromic Subsequence

最长回文子序列,跟第5题类似

dp[i][j]: the longest palindromic subsequence’s length of substring(i, j)

状态转移方程: dp[i][j] = dp[i+1][j-1] + 2 if s.charAt(i) == s.charAt(j)

otherwise, dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1])

初始化: dp[0][0] = 1

https://leetcode.com/problems/longest-palindromic-subsequence/discuss/99101/Straight-forward-Java-DP-solution 同时还有自顶向下的例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public int longestPalindromeSubseq(String s) {
        if (s.isEmpty()) {
            return 0;
        }
        int[][] dp = new int[s.length()][s.length()];

        for (int i = s.length() - 1; i >= 0; i--) {
            dp[i][i] = 1;
            for (int j = i + 1; j < s.length(); j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.length() - 1];
    }
}