05 August 2008
There are
network nodes, labelled 1
N
to 1
1
.1
N
Given
, a list of travel times as directed edges 1
times
, where 1
times[i] = (u, v, w)
is the source node, 1
u
is the target node, and 1
v
is the time it takes for a signal to travel from source to target.1
w
Now, we send a signal from a certain node
. How long will it take for all nodes to receive the signal? If it is impossible, return 1
K
.1
-1
Example 1:
1
2
Input: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2
Output: 2
Note:
1
N
will be in the range 1
[1, 100]
.1
K
will be in the range 1
[1, N]
.1
times
will be in the range 1
[1, 6000]
.1
times[i] = (u, v, w)
will have 1
1 <= u, v <= N
and 1
0 <= w <= 100
.根据题目,从一个节点访问所有别的节点,总共需要多长时间。这个是图的BFS或者DFS做法,求从源节点到最远目标节点的最短路径,是Dijkstra类似的问题,Time O(Nlog(N) + E), Space: O(N + E)。
PS另外两种算法:
Floyd–Warshall算法:Time complexity: O(N^3), Space complexity: O(N^2)
Bellman-Ford算法:Time complexity: O(N*E), Space complexity: O(N)
BFS实现Dijkstra,java的API需要熟悉下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
public int networkDelayTime(int[][] times, int N, int K) {
Map<Integer, Map<Integer, Integer>> map = new HashMap<>(); //分解二维数组,用一个hashmap来存储源节点和带遍历的目标节点+delay时间
for (int[] time : times) { // key为源节点,value为map,其中key为目标节点,value为delay时间
map.putIfAbsent(time[0], new HashMap<>());
map.get(time[0]).put(time[1], time[2]);
}
// 用一个优先队列来记录从源节点向外扩散的层,每一层的目标节点根据delay time来确定
// 目标节点-delay time
Queue<int[]> pq = new PriorityQueue<>((a, b) -> a[1] - b[1]);
// 先把参数源节点加入到优先队列,它的delay time是0
pq.offer(new int[]{K, 0});
// 因为节点是以整数表示,所以用一个数组true/false即可表示是否被访问过
boolean[] visited = new boolean[N + 1]; //从1开始,免得标记时还需要转换
int result = 0;
// BFS
while (!pq.isEmpty()) {
int[] curr = pq.poll();
int currNode = curr[0];
int currDelay = curr[1];
if (visited[currNode]) { // 当前节点已被访问过
continue;
}
// 标记访问
visited[currNode] = true;
result = currDelay; //把结果更新为当前层的delay time
// 处理当前层每个节点的下一层
if (map.containsKey(currNode)) { // 防止null
for (int neighbor : map.get(currNode).keySet()) { // 获取当前节点的所有目标节点
pq.offer(new int[]{neighbor, currDelay + map.get(currNode).get(neighbor)}); // 源节点到当前层delay time + 当前层到目标节点的delay time
}
}
N--; // 层数-1
}
return N == 0 ? result : -1;
}
}