05 August 2008
二维数组中每个元素有两个elements,表示互相不喜欢的两个党派,判断是否能完全分开
图的DFS group[i] = 0 means node i hasn’t been visited. group[i] = 1 means node i has been grouped to 1. group[i] = -1 means node i has been grouped to -1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public boolean possibleBipartition(int N, int[][] dislikes) {
int[][] graph = new int[N][N];
for (int[] d : dislikes) {
graph[d[0] - 1][d[1] - 1] = 1;
graph[d[1] - 1][d[0] - 1] = 1;
}
int[] group = new int[N];
for (int i = 0; i < N; i++) {
if (group[i] == 0 && !dfs(graph, group, i, 1)) {
return false;
}
}
return true;
}
private boolean dfs(int[][] graph, int[] group, int index, int g) {
group[index] = g;
for (int i = 0; i < graph.length; i++) {
if (graph[index][i] == 1) {
if (group[i] == g) {
return false;
}
if (group[i] == 0 && !dfs(graph, group, i, -g)) {
return false;
}
}
}
return true;
}
}
图的BFS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
public boolean possibleBipartition(int n, int[][] dislikes) {
List<Integer>[] graph = new ArrayList[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] dislike : dislikes) {
int u = dislike[0] - 1;
int v = dislike[1] - 1;
graph[u].add(v);
graph[v].add(u);
}
int[] colors = new int[n];
for (int i = 0; i < n; i++) {
if (colors[i] != 0) {
continue;
}
colors[i] = 1;
Queue<Integer> queue = new LinkedList<>();
queue.add(i);
while (!queue.isEmpty()) {
int node = queue.poll();
for (int adj : graph[node]) {
if (colors[adj] == colors[node]) {
return false;
}
if (colors[adj] == 0) {
colors[adj] = -colors[node];
queue.add(adj);
}
}
}
}
return true;
}
// dfs approach
public boolean possibleBipartition(int n, int[][] dislikes) {
List<Integer>[] graph = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] dislike : dislikes) {
graph[dislike[0]].add(dislike[1]);
graph[dislike[1]].add(dislike[0]);
}
int[] colors = new int[n + 1];
for (int node = 1; node <= n; node++) {
if (colors[node] == 0 && !paint(colors, node, graph, 1)) {
return false;
}
}
return true;
}
private boolean paint(int[] colors, int node, List<Integer>[] graph, int color) {
if (colors[node] != 0) {
return colors[node] == color;
}
colors[node] = color;
for (int adj : graph[node]) {
if (!paint(colors, adj, graph, -color)) {
return false;
}
}
return true;
}
Union Find
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public boolean possibleBipartition(int N, int[][] dislikes) {
int[] colors = new int[N + 1];
for(int i = 1; i <= N; ++i) colors[i] = i;
for(int i = 0; i < dislikes.length; ++i) {
int p1 = dislikes[i][0], p2 = dislikes[i][1];
if(colors[p2] == p2) colors[p2] = p1;
else {
int[] uf1 = find(p1, colors), uf2 = find(p2, colors);
if(uf1[0] == uf2[0] && uf1[1] == uf2[1]) return false;
}
}
return true;
}
private int[] find(int p, int[] colors) {
int color = 0;
while(colors[p] != p) {
p = colors[p];
color = color == 0 ? 1 : 0;
}
return new int[] {p, color};
}
}