05 August 2008
Return any binary tree that matches the given preorder and postorder traversals.
Values in the traversals
and 1
pre
are distinct positive integers.1
post
Example 1:
1
2
Input: pre = [1,2,4,5,3,6,7], post = [4,5,2,6,7,3,1]
Output: [1,2,3,4,5,6,7]
Note:
1
1 <= pre.length == post.length <= 30
1
pre[]
and 1
post[]
are both permutations of 1
1, 2, ..., pre.length
.前序和后序没有办法确定唯一的二叉树,返回任意一棵树就行。
迭代, O(n)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
/**
* 遍历pre,逐个重建node
* 与pre+in和in+post一样,利用queue存储当前路径
* node = new TreeNode(pre[i]),如果不是左孩子,就加到右孩子上面
* 如果在pre和post中遇到了同样的值,说明当前子树的构建完成,从queue中pop出来
*/
public TreeNode constructFromPrePost(int[] pre, int[] post) {
Deque<TreeNode> queue = new ArrayDeque<>();
queue.offer(new TreeNode(pre[0]));
for (int i = 1,j =0; i < pre.length; i++) {
TreeNode node = new TreeNode(pre[i]);
while (queue.getLast().val == post[j]) {
queue.pollLast();
j++;
}
if (queue.getLast().left == null) {
queue.getLast().left = node;
} else {
queue.getLast().right = node;
}
queue.offer(node);
}
return queue.getFirst();
}
}
递归
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode constructFromPrePost(int[] pre, int[] post) {
return constructFromPrePost(pre, 0, pre.length-1, post, 0, post.length-1);
}
public TreeNode constructFromPrePost(int[] pre, int preL, int preR, int[] post, int postL, int postR) {
if (preL > preR || postL > postR) {
return null;
}
TreeNode root = new TreeNode(pre[preL]);
if (preL == preR) {
return root;
}
int index = -1;
for (int i = postL ; i < postR ; i++) {
if (pre[preL+1] == post[i]) {
index = i;
break;
}
}
if (index == -1) {
return root;
}
root.left = constructFromPrePost(pre, preL+1, preL+1+(index-postL), post, postL, index);
root.right = constructFromPrePost(pre, preL+1+(index-postL)+1, preR, post, index+1, postR);
return root;
}
}