GuilinDev

Lc1971

05 August 2008

1971 Find if Path Exists in Graph

有向图中判断两个点之间是否有path

BFS - O(V + E)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Solution {
   public boolean validPath(int n, int[][] edges, int start, int end) {
        boolean[] visited = new boolean[n];
        HashSet<Integer>[] graph = new HashSet[n];
        int i, j;
        
        for(i = 0; i < n; i++){
            graph[i] = new HashSet<Integer>();
        }
        
        for(int[] edge : edges){
            graph[edge[0]].add(edge[1]);
            graph[edge[1]].add(edge[0]);
            if(graph[start].contains(end)){  // direct connection exists
                return true;
            }
        }
       
        Queue<Integer> queue = new LinkedList<Integer>();
        int N, current;
        queue.offer(start);
        visited[start] = true;
       
        while(!queue.isEmpty()){
            N = queue.size();
            for(i = 0; i < N; i++){
                current = queue.poll();
                if(current == end){
                    return true;
                }
                
                for(Integer neighbor : graph[current]){
                    if(!visited[neighbor]){
                        visited[neighbor] = true;
                        queue.offer(neighbor);
                    }
                }
            }
        }
       
        return false;
    }
}

DFS - O(V + E)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution {
    private boolean seen;
    
    public boolean validPath(int n, int[][] edges, int start, int end) {
        boolean[] visited = new boolean[n];
        HashSet<Integer>[] graph = new HashSet[n];
        int i, j;
        
        for(i = 0; i < n; i++){
            graph[i] = new HashSet<Integer>();
        }
        
        for(int[] edge : edges){
            graph[edge[0]].add(edge[1]);
            graph[edge[1]].add(edge[0]);
            if(graph[start].contains(end)){  // direct connection exists
                return true;
            }
        }
        
        seen = false;
        dfs(graph, visited, start, end);
        return seen;
    }
    
    private void dfs(HashSet<Integer>[] graph, boolean[] visited, int start, int end){
        if(!visited[start] && !seen){
            if(start == end){
                seen = true;
                return;
            }
            
            visited[start] = true;
            for(Integer neighbor : graph[start]){
                dfs(graph, visited, neighbor, end);
            }
        }
    }
}

Disjoint Set Union by Rank - O(E alpha(V)) + O(alpha(V))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class DisjointSetUnion{
    private int[] parent;
    private int[] rank;
    private int N;
    
    public DisjointSetUnion(int n){
        this.N = n;
        this.parent = new int[this.N];
        this.rank = new int[this.N];
        for(int i = 0; i < this.N; i++){
            this.parent[i] = i;
            this.rank[i] = 1;
        }
    }
    
    public boolean areConnected(int u, int v){
        return find(u) == find(v);
    }
    
    public void union(int u, int v){
        if(u != v){
            int a = find(u);
            int b = find(v);
            if(a != b){
                if(rank[a] > rank[b]){
                    parent[b] = a;
                    rank[a] += rank[b];
                }else{
                    parent[a] = b;
                    rank[b] += rank[a];
                }
            }
        }
    }
    
    private int find(int u){
        int x = u;
        while(x != this.parent[x]){
            x = this.parent[x];
        }
        
        this.parent[u] = x;
        return x;
    }
}

class Solution {
    public boolean validPath(int n, int[][] edges, int start, int end) {
        DisjointSetUnion set = new DisjointSetUnion(n);
        for(int[] edge : edges){
            set.union(edge[0], edge[1]);
        }
        
        return set.areConnected(start, end);
    }
}